Benchmarking

Validation that analytical method adequately represents reality for a given application. Integrated test of

- Evaluated nuclear data
- Nuclear data processing codes
- Transport codes

Integral Experiments

Basic data for benchmark development

- Critical assemblies
- Subcritical assemblies
- Engineering mockup critical assemblies
- Reactor startup exp.
- Reactor operation data
- Shielding experiments

Benchmark Evaluation

- Well characterized experiments
- Evaluate experimental uncertainties
- Bias and uncertainty for model simplifications
 - Geometry simplifications
 - Room return
 - Material impurities
- Describe benchmark model
- Sample calculation results
- Disseminate for broader use
- Established Handbooks
 - ICSBEP (criticality safety)
 - IRPhEP (reactor physics)
 - SINBAD (shielding)

Validation Testing

- Suite of benchmarks to validate evaluated nuclear data for applications
- Provides feedback to measurement and evaluation community
- Drives improvements in evaluated nuclear data

Ref: D. A. Brown, et al., Nuclear Data Sheets, 148, 1 (2018)

Validation End Product

- Ultimate goal is to improve evaluated nuclear data for applications
- Example shows improvement in fast metal system for ENDF/B-VIII.0
- Provides end-users confidence they can use codes and nuclear data for their applications

M.B. Chadwick et al, Nuclear Data Sheets 148, 189 (2018)